
Enzimas Aplicadas na Industria Têxtil e de Curtumes

ETAPAS DO PROCESSAMENTO DE FIBRAS DE ALGODÃO

Alvejamento-branqueamento inicial da malha. Tem a função de limpeza das impurezas das mesmas, Tecelagem - fios são transformados em tecido nos teares

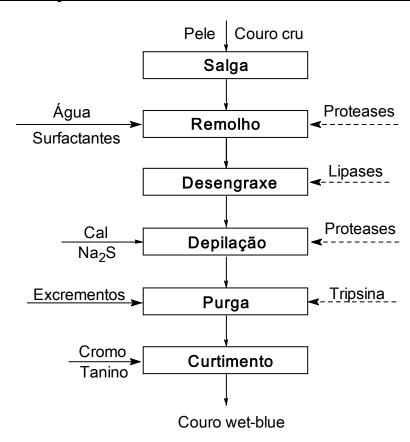
Chamuscagem - É a queima da penugem do pano

A desengomagem é a remoção, através do emprego de produtos químicos, da goma aplicada ao tecido antes da tecelagem

APLICAÇÃO ENZIMÁTICA

- Limpeza uso de pectinases visando remoção de substâncias pecticas para produção de fibras têxteis naturais. Envolve a etapa de liberação das fibras celulósicas do caule das plantas, através da destruição total da parede secundária que é composta de substâncias pécticas em sua grande totalidade. Microrganismo (Penicilliun sp) produtor de pectinases para a indústria têxtil eficiência na produção de enzimas pectinolíticas, associada à baixa atividade de celulases, pois estas enzimas atuam enfraquecendo as fibras naturais que são constituídas de celulose.
- Desengomagem- o uso das enzimas que hidrolisam o amido constitui o método preferido devido ao alto grau de eficiência e à sua ação específica. As amilases (α-amilases bacterianas e termotolerantes) eliminam completamente a goma sem causar estragos no tecido. Outra vantagem é o fato das enzimas serem inofensivas ao meio ambiente, de modo que os efluentes deste processo são mais aceitáveis do ponto de vista de proteção ambiental.
- Alvejamento- Tecidos naturais são normalmente alvejados com peróxido de hidrogênio antes do tingimento - método tradicional neutraliza-se o alvejante com um agente de redução. As enzimas apresentam uma alternativa mais conveniente uma pequena dose de catalase é capaz de decompor o peróxido de hidrogênio em água e oxigênio.
- <u>Tingimento</u> tratamento enzimático com celulases conhecido como biopolishing tem, até agora, principalmente sido usado para tecidos de algodão (tratamento confere ao tecido uma aparência mais regular e lustrosa- remove os fuzz – bolinhas). A lã é constituída de proteína e, por isso, o tratamento deve ser feito com *protease*.
- Acabamento do jeans- lavagens de jeans celulase especial para acelerar a abrasão.
 A celulase (são celulases produzidas por Trichoderma sp. e Humicola sp., que atuam a pH 4 a 7) trabalha na dissolução da tinta azul-índigo do brim em um processo conhecido como bio-lavagem (biostoning).

Enzimas comerciais utilizadas em remoção de adesivos à base de amido de tecidos


Tipo de enzima	temperatura de operação (°C)	рН	inibidores	ativadores
Amilase de malte	55-65	4,5-5,5	íons metálicos, alcali, contaminantes do amido	íons cálcio
Amilase de pâncreas	40-55	6,5-7,0	íons metálicos, ácidos	1
Amilase fúngica	50-55	4,5-5,5	íons metálicos, alcali, sequestrantes	íons cálcio
Amilase bacteriana	60-75	5,5-7,0	sequestrantes, surfactantes aniônicos	íons cálcio
Amilase bacteriana termoestável	85-110	5,0-7,5	surfactantes aniônicos	íons cálcio

ETAPAS DO PROCESSAMENTO E APLICAÇÃO ENZIMÁTICA NO COURO

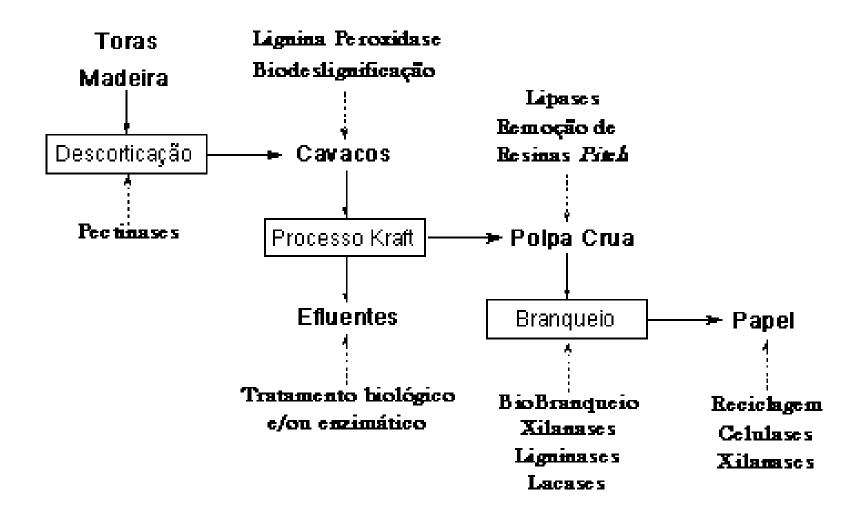
- Salga- Para preservar peles e couros crus antes do processamento, eles são desidratados e acondicionados com sal anidro, ou então imersos em uma salmoura e secos ao sol - evitar a contaminação microbiológica, que poderia prejudicar o tratamento enzimático nas outras etapas.
- Remolho -Nas curtidoras, as peles e couros crus são reidratadas para remoção de sal, impurezas, sangue e resíduos gordurosos, em uma etapa chamada de pré-molho. Depois na etapa de remolho, as proteínas não-fibrilares, como albuminas e globulinas são removidas para facilitar este processo, proteases alcalinas são usadas para remover estas proteínas não-fibrilares, facilitando a absorção da água pelo couro e diminuindo o tempo de remolho. As enzimas podem ser utilizadas conjuntamente com surfactantes aniônicos e não-ionicos.
- Desengraxe O desengraxe com lipases está associado a etapa de remolho e tem sido usado como alternativa aos tensoativos e solventes. As lipases hidrolisam não apenas a gordura da superfície dos couros crus e peles, mas também a gordura interna da estrutura do couro. A vantagem de se usar as lipases está em que elas não interferem na estrutura, apenas hidrolisam a gordura.

- Depilação (Calagem) No processo de depilação é removido tanto o pêlo quanto a epiderme do couro cru (proteínas residuais não-fibrilares com uma mistura de cal hidratada (CaO), soda (NaOH) e sulfeto de sódio (Na₂S) gerar efluentes com necessidade de tratamento. O uso de proteases alcalinas, é diminuída em mais da metade a quantidade de cal e sulfetos requeridos a qualidade final do couro é melhorada, menos efluente é produzido.
- Purga Antes do curtimento, o couro precisa ser parcialmente neutralizado com ácidos orgânicos, para depois iniciar a etapa de purga para tornar o couro mais macio através de um tratamento enzimático que elimina as glicoproteínas e os resíduos das outras etapas, e relaxa as fibras de colágeno do couro. Tradicionalmente, se utiliza excremento de cães e pombos como agente de purga. Além de ser um processo de difícil controle, com resultados imprevisíveis, o excremento não contribuía exatamente para a criação de uma ambiente agradável de trabalho. Atualmente, as proteases pancreáticas, como a tripsina, e as fúngicas ácidas são usadas no processo de purga.
- Curtimento os tratamentos enzimáticos anteriores influenciam na qualidade do curtimento. Já há tratamentos enzimático para couros curtidos com aplicação de protease, especifica para degradação de elastina, o que gera um aumento na área de superfície do couro, resultando em um preço melhor também.

Etapas do processamento de couro wet-blue

Processo Enzimático em 1 Etapa

Este processo foi criado para englobar as etapas de remolho, desengraxe depilação e purga em uma só operação.


Em comparação com o processo convencional este consegue reduzir o tempo de tratamento e o consumo de água pela metado ocorrendo no máximo em 24 horas e utilizando uma quantidade de proteases e lipases de 0,2 a 0,3%.

INDÚSTRIA DE PAPEL E CELULOSE

Alguns exemplos de aplicação podem ser concretizados em diferentes etapas do processamento industrial da madeira nas usinas papeleiras:

- utilização de pectinases no descascamento da madeira
 - O efeito do pré-tratamento proporciona decréscimos de até 80% com os gastos de energia. Além da *poligalacturonase*, as enzimas *pectinoliase* e *xilanase* também se encontram presentes na maioria das preparações mais eficientes.
- biodeslignificação dos cavacos por fungos lignolitícos. Uma lipase comercial provou ser capaz de reduzir significativamente os depósitos de pitch sobre os cilindros e outros equipamentos.
- biobranqueamento das polpas por xilanases. As hemiceluloses são, em sua maior parte, polímeros de xilana que é grande inibidor do branqueamento da pasta de celulose, pois re-precipita sobre as fibras: aumento da utilização de agentes oxidantes.
 - Com o tratamento enzimático (através do uso de *xilanases*) da polpa KRAFT antes do branqueamento, é possível obter uma hidrólise parcial muito seletiva da hemicelulose. A enzima traz dois efeitos indiretos:

Possibilita retirar mais lignina da celulose e;

Torna a celulose mais susceptível aos branqueadores químicos.

Alguns exemplos de aplicação podem ser concretizados em diferentes etapas do processamento industrial da madeira nas usinas papeleiras:

- destingimento de papéis por celulases na reciclagem. Uma mistura de enzimas composta de celulases e hemicelulases apresenta um efeito notável sobre o processamento das fibras secundárias. As celulases alcalinas são as mais adequadas para destingir o papel misto.
- tratamento de efluentes por enzimas lignolitícas ou por seus fungos produtores. Os produtos à base de enzimas (lacases, peroxidases (fenol) e ligninases) atuam diretamente na quebra de cadeias carbônicas das sujeiras, promovendo assim a limpeza dos equipamentos e o aumento da sua vida útil. O processo faz com que a sujeira se desprenda da superfície com mais facilidade, e inclusive contribui com o tratamento do efluente gerado dentro do próprio processo produtivo.

Detergentes

Detergentes "biológicos"

Agentes Auxiliares vs Produto Final

Composição

 Enzimas devem atuar em condições geralmente drásticas (pH, tensoativos, elevadas temperaturas)

Proteases

Mais utilizadas em detergentes

Capim, sangue, ovo e suor humano

Detergentes não enzimáticos -> manchas permanentes sangue = mancha cor de ferrugem durante alvejamento

Proteases comerciais: *Bacillus sp* em fermentação submersa

SAVINASE, ALCALASE, SUBTILISIN NOVO...

Proteases

Início: proteases Alcalinas → Altas temperaturas e pH elevado

Lavagens a temperaturas mais baixas (EUA e Japão)

Proteases de efeito sinérgico

- Hidrólise limitada
- Facilitar a ação dos detergentes

Lipases

Difícil aplicação de enzimas, principalmente em baixas temperaturas

LIPOLASE (Novo Nordisk, 1988) – eng. genética batom, frituras, manteiga, azeite, molhos manchas nos colarinhos e punhos.

LIPOLASE ULTRA (Novo Nordisk, 1995) baixas temperaturas 10 °C, ¼ [lipolase]

Amilases

Purê de batata, macarrão, mingau, pudim, molho de carne, chocolate.

Amido atua como "cola", "selante".

Amido → Oligômeros de cadeia curta, s. em água.

Lava roupas e louças

- Fabricação dos tecidos
- Manchas de alimentos
- Produtos que auxiliam na passagem da roupa

Celulases

Degradam o tecido

Modificação da estrutura das fibrilas celulósicas

Remoção de microfibrilas

Intensificação da cor Amaciamento Remoção de partículas de sujeira

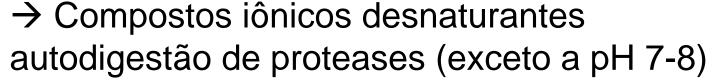
Detergentes em pó

1960 Proteases alcalinas ⇒ reações alérgicas

1970 T – granulado: enzima revestida com uma substância inerte resistente a abrasão e ao impacto

Formulação:

Recheios ou agentes ligantes em pequenos grânulos


Revestimento com cera ou outro material inerte

Detergentes líquidos

Estabilidade da enzima

- \rightarrow AW
- → pH alcalino

Lava louças

Metasilicato, fosfatos e cloro alvejante

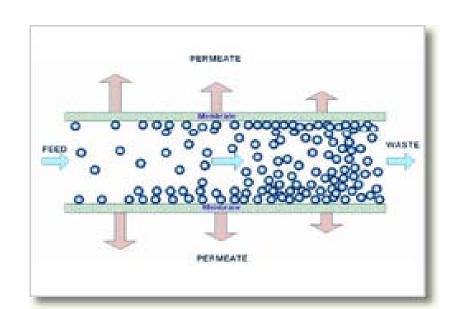
____ abandonados por razões ambientais

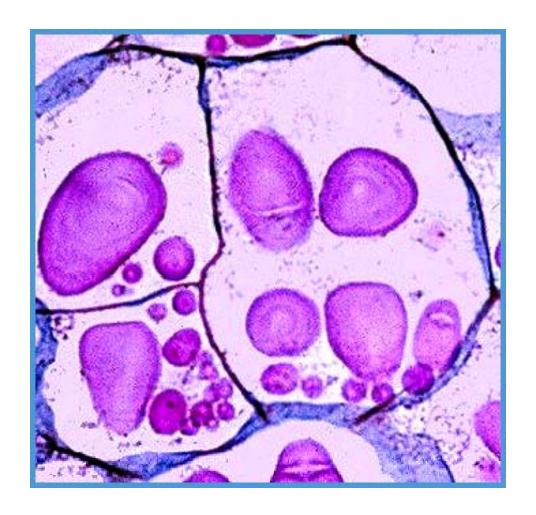
→ disilicato (redução do pH)

Adição de enzimas remoção de amido e manchas de proteínas

Limpeza de Membranas

Ultrafiltração, Microfiltração e Osmose Reversa

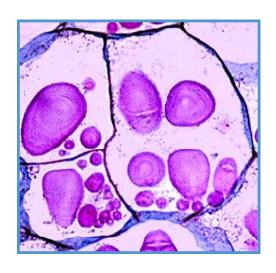

Limpeza regular: agentes químicos (soda cáustica, ácidos)


Processamento de frutas: resíduos de pectina e polissacarídeos

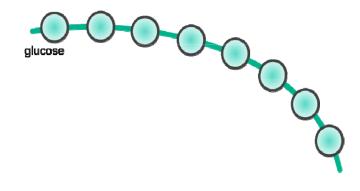
→ Complexo enzimático para remover camada orgânica.

1° pectinase2° amilase, protease, celulasehemicelulase

Laticínios: proteases



Amido


Sacarídeos

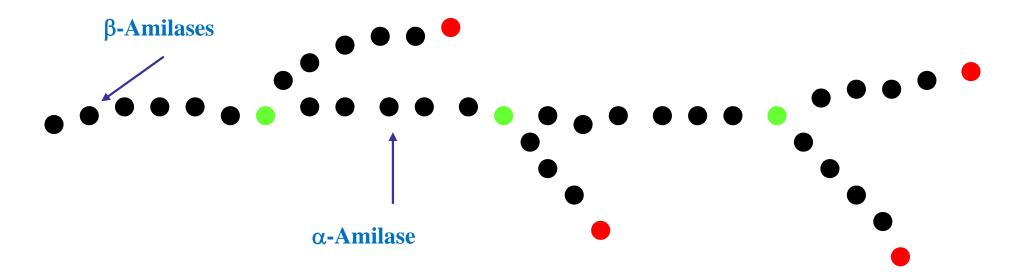
- Dissacarídeos -> Sacarose, Maltose
- Oligossacarídeos → 2 a 6 mono
- Polissacarídeos → Amido

AMIDO

AMILOSE: LIGAÇÕES GLICOSÍDICAS α (1-4) (gelatinização e retrodegradação)

amilose

AMILOPECTINA: LIGAÇÕES α (1-4) E POR LIGAÇÕES α (1-6) (cristalização)

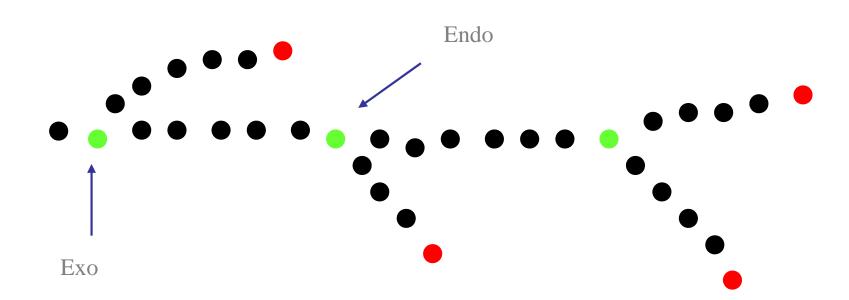

LIGAÇÕES α(1-4)

Endo $\alpha(1-4)$ glucanases (α -Amilases) \rightarrow Dextrinas

- Suco pancreático, saliva, germinação de cereais, fungos e bactérias

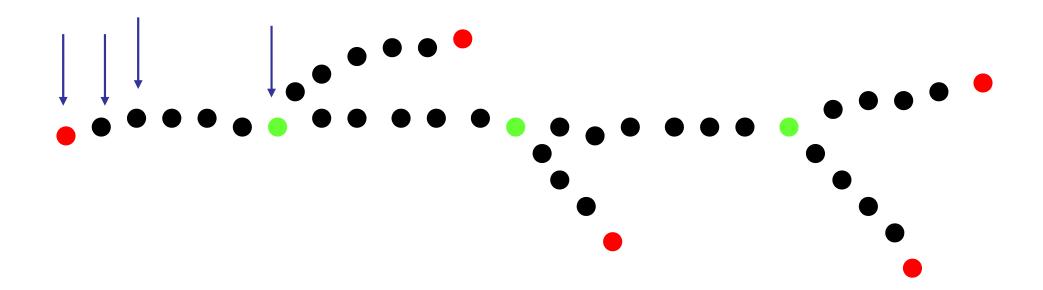
Exo $\alpha(1-4)$ glucanases (β -Amilases) \rightarrow Maltose

- -Cereais, bactérias
- Parte não redutora



LIGAÇÕES $\alpha(1-6)$

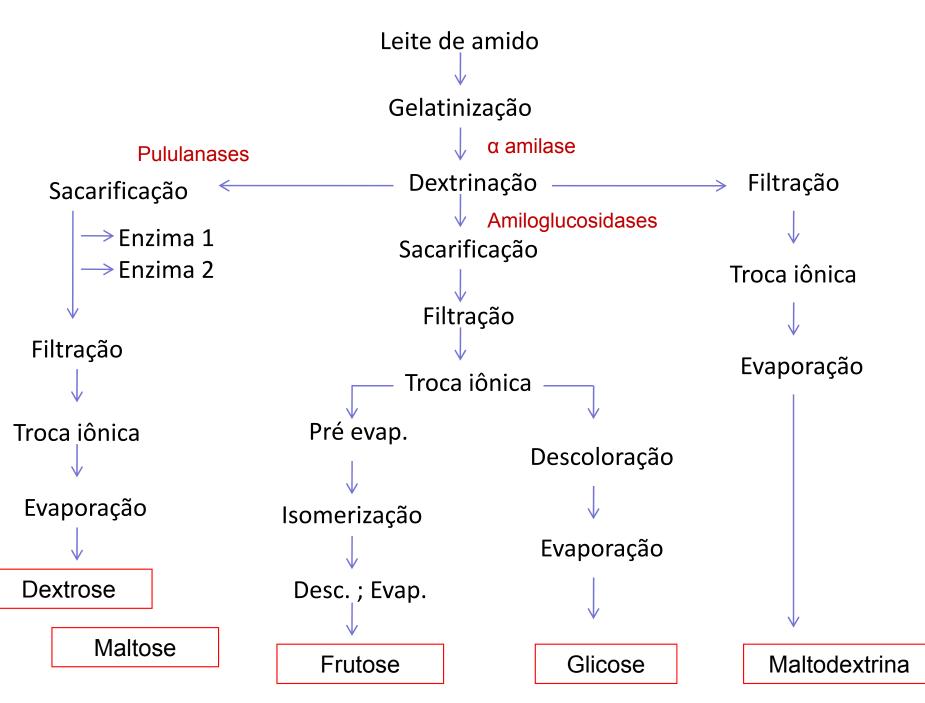
- Desramificantes


Endo $\alpha(1-6)$ glucanases (Pululanases e isoamilases) \rightarrow Dextrinas

Exo $\alpha(1-6)$ glucanases (exopululanases) \rightarrow Glicose

AMILOGLUCOSIDASES

 $\alpha(1-4) e \alpha(1-6)$



Tipo	Nome comum	Microrganismos Substrato		Ótimo	
		produtores		pН	°C
Endo-amilase	Amilase	B. subtilis	α-1,4-glicosil	6.0	65-70
	bacteriana	B. licheniformis	α-1,4-glicosil	5.0-7.0	90
		A. oryzae	α-1,4-glicosil	4.5	50-60
	Amilase fúngica		, ,		
Exo-amilase	Amiloglucosidase	A. niger	α-1,4-glicosil	4.0-5.0	60
			α-1,6-glicosil		
	β-amilase bacter.	Bacillus sp.	α-1,4-glicosil	5.0	55-60
		Clostridium sp.	α-1,4-glicosil	5.5-6.0	75-85
α-1,6-amilase	Pululanase	K. aerogenes	α-1,6-Maltotriosil	5.0	60
.,.	Isoamilase	Pseudomonas sp	α-1,6-Heptasac.	4.0	50-55
Isomerase	Glicose isomerase	B. circulans	Aldo/ceto pentose Aldo/ceto hexose	8.2	65

Figura 1 - Características das enzimas envolvidas na hidrólise do amido.

Fonte: Maldonado & Lopez (1995)

ÁRVORE DE PRODUTOS

PRODUTOS

Maltodextrinas (oligômeros) Espessante, não adocicado

3 glic. Unidas por ligações α (1-4)

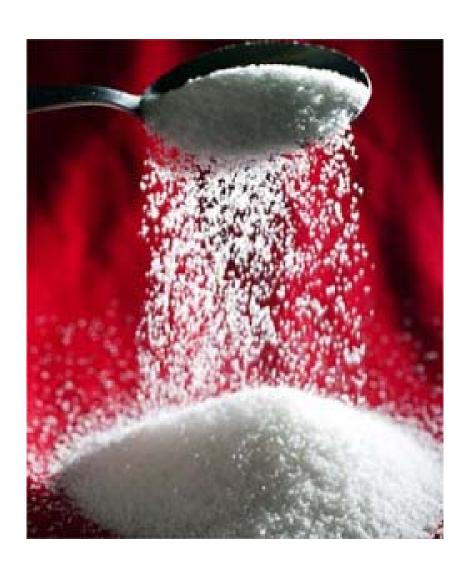
Maltose (dímero) Cerveja, leite em pó, caramelo, creme, chocolate

2 glic. Unidas por ligações α (1-4)

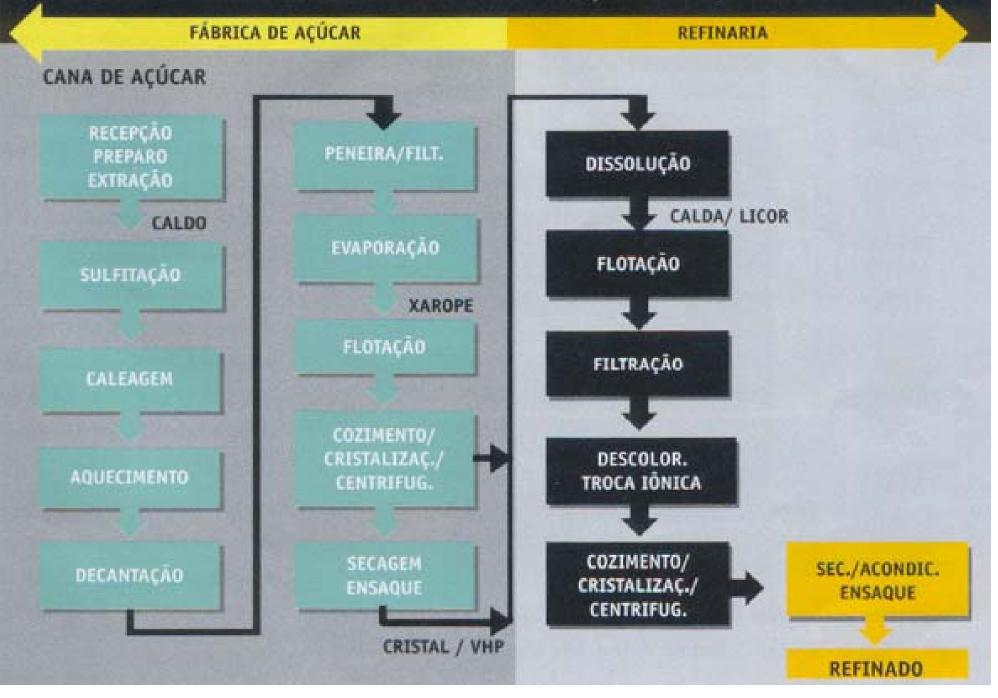
Dextrinas

Várias glicoses unidas por ligações $\alpha(1-4)$ e $\alpha(1-6)$

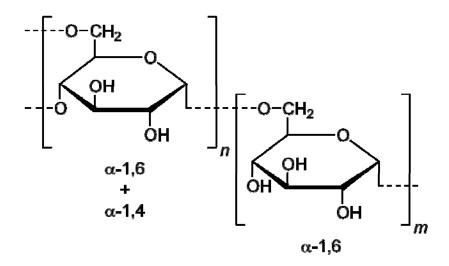
Glicose e frutose Diversas indústrias

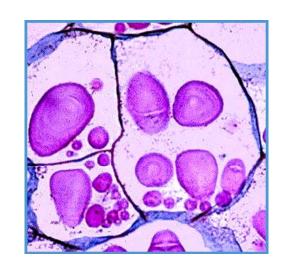

<u>Distribuição do tipo de açúcares e oligômeros obtidos a partir da dextrinização de amido liquefeito com amilases de distintas origens</u>

Composto (%)	Tipo de amilase					
	bacteriana	Fúngica	malte	amiloglucosidase		
Glicose	4	3	1	83		
Maltose	10	50	60	7		
Maltotriose	18	26	8	3		
Dextrinas	68	21	31	7		


Reação de isomerização da glicose catalisada por glicoisomerase. 55-61°C / pH 7,5 a 8,2 (Processo Contínuo com enzimas imobilizadas, em Leito fixo)

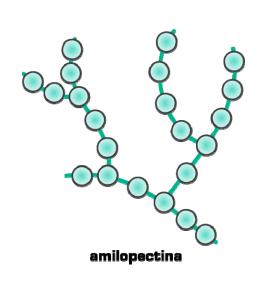
Açúcar

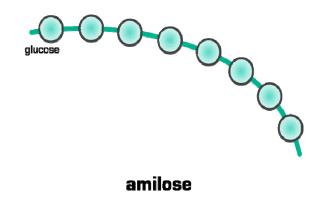

O PROCESSO TRADICIONAL DE PRODUÇÃO DE AÇÚCAR REFINADO



Dextrana

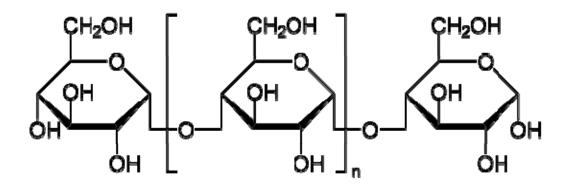
Sintetizado por Leuconostoc mesenteroides


- Cristalização durante a filtração
- Aumento da viscosidade
- Reduz clarificação

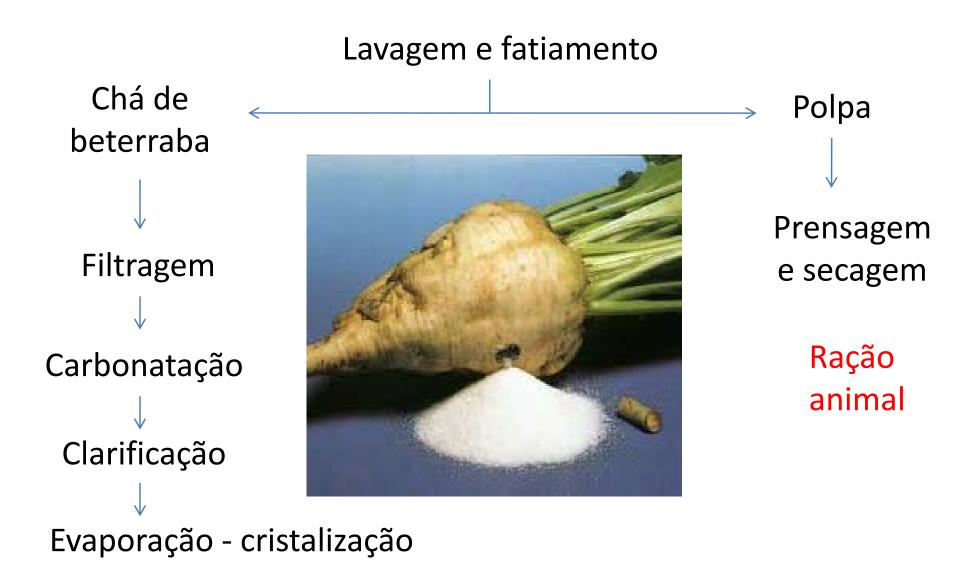


Amido

AMILOSE: LIGAÇÕES GLICOSÍDICAS α (1-4)


AMILOPECTINA: LIGAÇÕES α (1-4) E POR LIGAÇÕES α (1-6)

Naturalmente presente nas extremidades e folhas da cana


Amido

- Problemas:
 - Filtração
 - Cristalização de baixa qualidade
 - Turbidez na dissolução
 - Baixo rendimento

Solução: Amilases Dextrinas

Açúcar de Beterraba

- Limite de 8% cristaliza e contamina açúcar final
- Solução: α-galactosidase (rafinase)- Mortiella vinacea → Galactose. 80% de hidrólise

Panificação

PANIFICAÇÃO

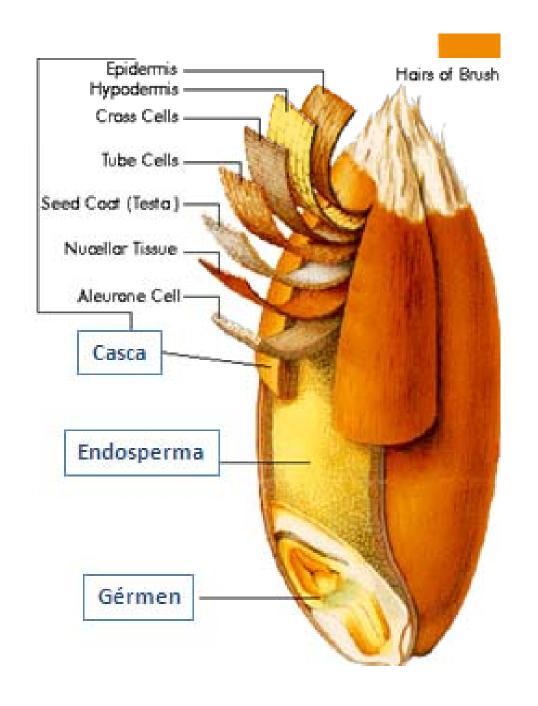
12 000 ac − Mesopotâmia → fermentação 7000 ac − Assado em forno

Pão branco apresenta alto valor energético, cerca de 20 a 50% das necessidades diárias

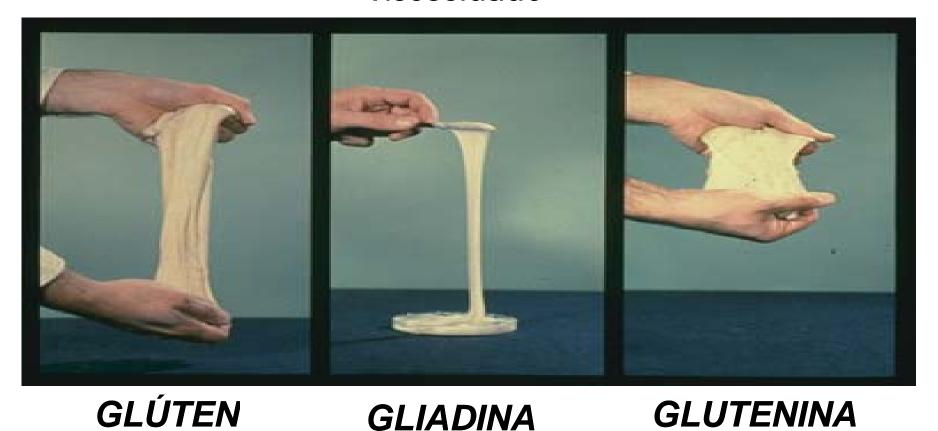
Figura 1 – Consumo de pães no Brasil e na Europa, respectivamente (dado 1999)

<u>Ingredientes</u>

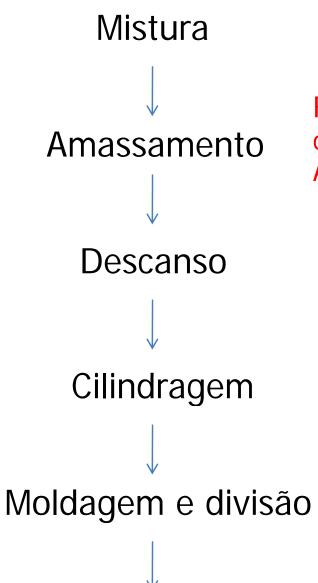
- Farinha, água, levedo, sal.
 - Amido (amilose e amilopectina) Crocância
 - Glúten (glutelina e glutadina) → Volume e dureza


Opcional: açúcar, gordura

Casca: fibras, proteínas, vitaminas, minerais.
Camada mais interna - enzimas


Endosperma: amido, proteína e água (83%)

Gérmen: gordura e vitamina (3%)



Extensão, viscosidade

Elasticidade

Trigo duro (Triticum durum) → + glúten → massas Trigo mole (Triticum aestivum) + amido → pães, bolos

Formação da rede de glúten, incorporação de ar, 25°C – fermentação controlada Açúcar → CO₂ e álcool

Forneamento

Maior formação e liberação de CO₂ e álcool, massa cresce!

Forneamento

50°C Alta atividade da enzima

40°C Alta atividade da levedura

30°C Temperatura de fermentação

25°C Multiplicação de leveduras

Forneamento

75 °C: Máximo pico de gelatinização:

Desnaturação de glúten

65 °C: Inativação de enzimas

55 - 60 °C: Morte de levedura:

início de gelatinização do amido

Forneamento

100 °C Grande quantidade da formação de vapor

79 °C : Vaporização de álcool

75 °C : Máximo pico de gelatinização :

Desnaturação de glúten

220 °C

Expansão de gás Aumento de volume

- -Aumento de volume de gás já presente nas vesículas da massa;
- -Aumento de pressão de vapor de água
- -Volatilização de etanol-água
- Bromato de potássio = proibido!

Amilases

Transforma amido em açúcar fermentescível – maior volume e cor.

Quantidade controlada para não ficar com miolo pastoso

Retardam envelhecimento do pão

- Já estão presentes em quantidades suficientes em farinhas de boa qualidade (mix)

Amilases

Adição de extrato de malte: muita α amilase, falta de padronização

Amilases industriais: maior controle

Amilase fúngica: não estável acima de 50°C (mesofílicas, pH 4,5 − 5,5) → mais usada pois não produz dextrina em excesso

Proteases

Quebram a rede de glúten

Massa mais extensível (volume)

Protease ou fermentação em excesso: rede de glúten não sustenta o CO₂ → pão "sola"

Amiloglucosidase

Formação de glicose – substrato para a reação de Maillard (escurecimento da casca)

Adição de amilases para assegurar quantidade de açúcares fermentescíveis suficientes no forneamento.

Retardando o envelhecimento

Retrogradação do amido – endurece e esfarela Uso de alfa-amilase correta

Exoamilase maltogênica bacteriana termoestável, que atue após a gelatinização e inative antes de acabar \rightarrow retendo sabor e aroma de recém- assado

Melhoramento da massa

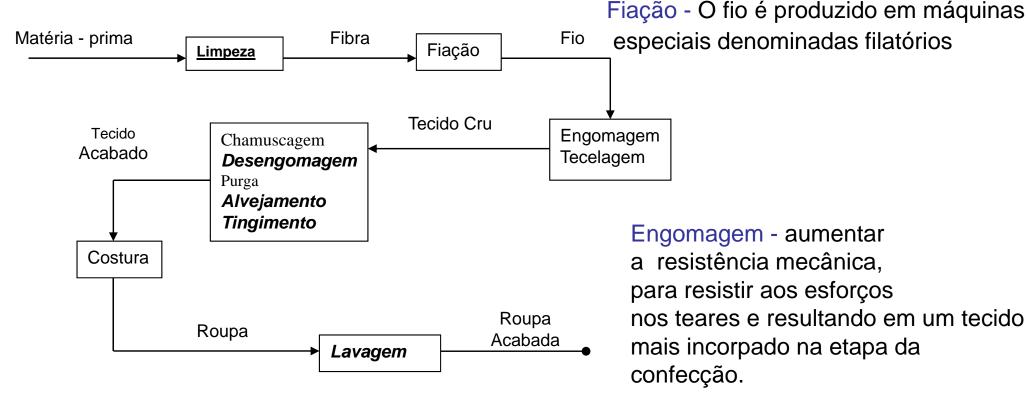
Presença de pentanonas impedem a formação do glútem

Uso de hidrolases

Biscoitos

Aditivos que enfraquecem o glútem – bissulfito de sódio

Alternativa: proteases fúngicas e bacterianas


Enzimas Aplicadas na Industria Têxtil e de Curtumes

ETAPAS DO PROCESSAMENTO DE FIBRAS DE ALGODÃO

Alvejamento-branqueamento inicial da malha. Tem a função de limpeza das impurezas das mesmas, Tecelagem - fios são transformados em tecido nos teares

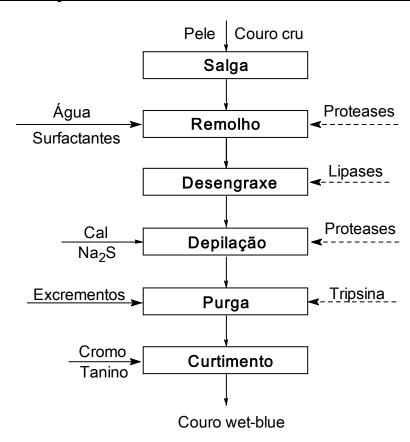
Chamuscagem - É a queima da penugem do pano

A desengomagem é a remoção, através do emprego de produtos químicos, da goma aplicada ao tecido antes da tecelagem

APLICAÇÃO ENZIMÁTICA

- Limpeza uso de pectinases visando remoção de substâncias pecticas para produção de fibras têxteis naturais. Envolve a etapa de liberação das fibras celulósicas do caule das plantas, através da destruição total da parede secundária que é composta de substâncias pécticas em sua grande totalidade. Microrganismo (Penicilliun sp) produtor de pectinases para a indústria têxtil eficiência na produção de enzimas pectinolíticas, associada à baixa atividade de celulases, pois estas enzimas atuam enfraquecendo as fibras naturais que são constituídas de celulose.
- Desengomagem- o uso das enzimas que hidrolisam o amido constitui o método preferido devido ao alto grau de eficiência e à sua ação específica. As amilases (α-amilases bacterianas e termotolerantes) eliminam completamente a goma sem causar estragos no tecido. Outra vantagem é o fato das enzimas serem inofensivas ao meio ambiente, de modo que os efluentes deste processo são mais aceitáveis do ponto de vista de proteção ambiental.
- Alvejamento- Tecidos naturais são normalmente alvejados com peróxido de hidrogênio antes do tingimento - método tradicional neutraliza-se o alvejante com um agente de redução. As enzimas apresentam uma alternativa mais conveniente uma pequena dose de catalase é capaz de decompor o peróxido de hidrogênio em água e oxigênio.
- <u>Tingimento</u> tratamento enzimático com celulases conhecido como biopolishing tem, até agora, principalmente sido usado para tecidos de algodão (tratamento confere ao tecido uma aparência mais regular e lustrosa- remove os fuzz – bolinhas). A lã é constituída de proteína e, por isso, o tratamento deve ser feito com *protease*.
- Acabamento do jeans- lavagens de jeans celulase especial para acelerar a abrasão.
 A celulase (são celulases produzidas por Trichoderma sp. e Humicola sp., que atuam a pH 4 a 7) trabalha na dissolução da tinta azul-índigo do brim em um processo conhecido como bio-lavagem (biostoning).

Enzimas comerciais utilizadas em remoção de adesivos à base de amido de tecidos


Tipo de enzima	temperatura de operação (°C)	рН	inibidores	ativadores
Amilase de malte	55-65	4,5-5,5	íons metálicos, alcali, contaminantes do amido	íons cálcio
Amilase de pâncreas	40-55	6,5-7,0	íons metálicos, ácidos	1
Amilase fúngica	50-55	4,5-5,5	íons metálicos, alcali, sequestrantes	íons cálcio
Amilase bacteriana	60-75	5,5-7,0	sequestrantes, surfactantes aniônicos	íons cálcio
Amilase bacteriana termoestável	85-110	5,0-7,5	surfactantes aniônicos	íons cálcio

ETAPAS DO PROCESSAMENTO E APLICAÇÃO ENZIMÁTICA NO COURO

- Salga- Para preservar peles e couros crus antes do processamento, eles são desidratados e acondicionados com sal anidro, ou então imersos em uma salmoura e secos ao sol - evitar a contaminação microbiológica, que poderia prejudicar o tratamento enzimático nas outras etapas.
- Remolho -Nas curtidoras, as peles e couros crus são reidratadas para remoção de sal, impurezas, sangue e resíduos gordurosos, em uma etapa chamada de pré-molho. Depois na etapa de remolho, as proteínas não-fibrilares, como albuminas e globulinas são removidas para facilitar este processo, proteases alcalinas são usadas para remover estas proteínas não-fibrilares, facilitando a absorção da água pelo couro e diminuindo o tempo de remolho. As enzimas podem ser utilizadas conjuntamente com surfactantes aniônicos e não-ionicos.
- Desengraxe O desengraxe com lipases está associado a etapa de remolho e tem sido usado como alternativa aos tensoativos e solventes. As lipases hidrolisam não apenas a gordura da superfície dos couros crus e peles, mas também a gordura interna da estrutura do couro. A vantagem de se usar as lipases está em que elas não interferem na estrutura, apenas hidrolisam a gordura.

- Depilação (Calagem) No processo de depilação é removido tanto o pêlo quanto a epiderme do couro cru (proteínas residuais não-fibrilares com uma mistura de cal hidratada (CaO), soda (NaOH) e sulfeto de sódio (Na₂S) gerar efluentes com necessidade de tratamento. O uso de proteases alcalinas, é diminuída em mais da metade a quantidade de cal e sulfetos requeridos a qualidade final do couro é melhorada, menos efluente é produzido.
- Purga Antes do curtimento, o couro precisa ser parcialmente neutralizado com ácidos orgânicos, para depois iniciar a etapa de purga para tornar o couro mais macio através de um tratamento enzimático que elimina as glicoproteínas e os resíduos das outras etapas, e relaxa as fibras de colágeno do couro. Tradicionalmente, se utiliza excremento de cães e pombos como agente de purga. Além de ser um processo de difícil controle, com resultados imprevisíveis, o excremento não contribuía exatamente para a criação de uma ambiente agradável de trabalho. Atualmente, as proteases pancreáticas, como a tripsina, e as fúngicas ácidas são usadas no processo de purga.
- Curtimento os tratamentos enzimáticos anteriores influenciam na qualidade do curtimento. Já há tratamentos enzimático para couros curtidos com aplicação de protease, especifica para degradação de elastina, o que gera um aumento na área de superfície do couro, resultando em um preço melhor também.

Etapas do processamento de couro wet-blue

Processo Enzimático em 1 Etapa

Este processo foi criado para englobar as etapas de remolho, desengraxe depilação e purga em uma só operação.

Em comparação com o processo convencional este consegue reduzir o tempo de tratamento e o consumo de água pela metado ocorrendo no máximo em 24 horas e utilizando uma quantidade de proteases e lipases de 0,2 a 0,3%.